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Viscoelasticity 
 

Books 
 
Most polymer texts cover this reasonably well in 
outline. 
 
More specialist texts for reference: 
 
JJ Aklonis and WJ Macknight Introduction to Polymer 
Viscoelasticity, Wiley 1983 
 
IM Ward Mechanical Properties of Solid Polymers 
Wiley 
 
Introduction 
 
A viscoelastic  material is, as the name suggests, one 
which shows a combination of viscous and elastic 
effects. 
 
The viscous term leads to energy dissipation. 
 
The elastic term to energy storage. 
 
Rate effects are very important for these materials 
 
For a viscous liquid with viscosity η, the constitutive 
equation relating stress σ to strain ε  is 
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  σ = η
dε
dt

 

There is dissipation of energy – and irreversible shape 
changes – associated with the flow. 
 
The viscosity can be related to the diffusion equation. 
 
If an external force f on a particle/atom gives rise to a 
velocity u then 
 u =  µ f  where µ is the mobility 
 
Einstein relation gives 
 µ = D/kT  where D is the diffusion coefficient 
 
Stokes Law says for a particle of radius a 
 f =6πη a u 
 

⇒ η =
kT

6πaD
 

 
In general then η and D are inversely related, and as D 
increases with temperature viscosity decreases. 
In contrast most solids exhibit pure elasticity 
 
Ideal elastic material 
  σ = Eε    E is Young's modulus 
 
Energy is stored as elastic energy. 
 
Material returns to original shape once stress removed. 
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Polymeric liquids, and various solids, have attributes of 
both and these are known as viscoelastic materials. 
 
Creep 
 
A constant load is applied and the resulting strain is 
measured. 

ε1 = immediate elastic deformation 
ε2 = delayed elastic deformation 
ε3  = Newtonian flow (i.e. permanent deformation) 
 
Define creep compliance 
 

  J(t) =
ε (t)
σo

 

 
so there are 3 components of the creep compliance J1 in 
general associated with the 3 components of strain. 
 
One exception to this is a crosslinked rubber: its 
memory effect means that there is no permanent shape 
change so that ε3 = 0 and so J3 also is zero. 

ε1

ε1
ε2

ε3

timeσο load applied

strain measured
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Division into J1 and J2 (or equivalently ε1 and ε2) fairly 
arbitrary. 
 
J1  and J2 sometimes knows as unrelaxed and relaxed 
responses. 
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Stress Relaxation 
 
A fixed extension (strain) is applied 
 

 
Define stress relaxation modulus 
 

  G(t) =
σ (t)
εo

 

 
If no viscous flow occurs, stress drops to finite value at 
infinite times → relaxed modulus. 
 
If there is viscous flow, stress can drop to zero. 
 
 
 
 
 
 

Models for Viscoelastic Response 
 

1. Maxwell Model  

time

strain appliedεο

stress σ measured
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Spring and Dashpot model 
 

  Spring = elastic component 
 

 +     Dashpot = viscous component 
 

 In series 
 
 
 
 

Define characteristic time τ for response 
 
  τ = η/E 
 
Equation of motion 
 
dε
dt

  = 
1
E

dσ
dt

 + 
σ
η

  

  
  
total   spring dashpot 
strain rate 
Stress relaxation experiment   
 
dε/dt = 0 in equation of motion 

∴0 =
1
E

dσ
dt

+
1
η

σ (t) 

 

E

η
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⇒
dσ
σ

= −
E
η

dt =
dt
τ

 

 
ln σ (t) = ln σo − t / τ  
 
σ (t)
εo

=
σo

εo
exp− t /τ  

 
E(t) = Eoexp-t/τ 
 

At very short times, the Maxwell model behaves as a 
simple spring. 
 
Takes longer for the viscous component to respond. 
 
For t>>τ stress drops to zero as only the response of the 
dashpot remains. 
 
 
 
2.  Kelvin or Voigt Model 
 
Spring and dashpot in parallel 
 

η	   σ1

σ2E

σ
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Total stress  σ = Eε +η
dε
dt

 

 
In a creep experiment, σ is a constant σo so, dividing by η 
 

σ o

η
=

ε
τ

=
dε
dt

 

 
Can solve for ε with integrating factor expt/τ 
 

ε(t) = σo/E (1-exp-t/τ) 
 

This model cannot be used for stress relaxation 
experiments, since it would require infinite force to strain 
viscous elements instantaneously. 
 
Both these models are too simple. 
 
Next step is to combine them to produce a 'standard 
linear solid'. 
 
This is an improvement, but there is still only one 
characteristic time associated with the model. 
 
In general there will be a whole spectrum of these – for 
instance in a polydisperse polymer melt, different chain 
lengths respond differently. 
 
Fast chains respond faster than long chains. 
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So to model a polymer melt properly we might imagine 
we need a whole system of standard linear solids each 
with its own τ. 
 
 
 
 
 
 
 
 
 
2. Standard Linear Solid  (due to Zener) 
 

 
 
 
 

σ 2 = ηm
dε
dt

−
ηm

Em

dσ 2

dt
 

 
 
 
 
 
 
 
 

Em

ηm

σ2

Er

σ1

σ
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σ = Erε +ηm
dε
dt

−
ηm

Em

dσ 2

dt
 

 

Add 
ηm

Em

dσ
dt

 to each side 

 

σ +
ηm

Em

dσ
dt

= Erε + ηm
dε
dt

+
ηm

Em

dσ1

dt
 

 

      Er
dε
dt

 

σ + τ
dσ
dt

= Erε +τ
dε
dt

(Em + Er ) 

 
Instantaneous response (ε=0), finite dε/dt) – no response 
from dashpot 
 
∴ modulus = Er + Em 

 

Long time response, dashpot takes all the strain and Em 
does not contribute 

 
∴ modulus = Er 
 relaxed 
modulus 
 
Energy dissipated 
(in dashpot) a 
maximum at some 
intermediate time. 
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At early and late times, no movement in dashpot and 
hence no dissipation. 
 
 

Boltzmann Superposition Principle 
 

To describe the general response of a system, must 
allow for details of loading history. 
 
This can be done using the Boltzmann superposition 
theory. 
 
Boltzmann proposed: 
• Creep is a function of the whole sample loading history. 
• Each loading step makes independent contribution to 

total loading history. 
• Total final deformation is the sum of each contribution. 
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In general, for a creep experiment, increments of stress 
dσ at times tn 
 

ε(t) = J(t −u)
dσ (u)

du−∞

t

∫ du  

 
For stress relaxation, incremental additions of strain dε at 
times tn 
 

 σ (t) = G(t −u)
dε(u)

du−∞

t

∫ du  

 
For a steady state shear rate, this can be rewritten as 
 
σ(t) = ηodε/dt     Newton's law of viscosity 
 

where ηo = G(t − u)du
0

∞

∫    (by change of variable) 

 
 

Note that this theory only works for small deformations – 
this is linear viscoelastic theory. 
 
 
 
 

Complex Modulus and Dynamic Experiments 
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Two types of processes occurring – storage and 
dissipation of energy. 
 
Looking at the analogous situation of LCR circuits, 
where V and I are out of phase for oscillating signals, 
can anticipate that for viscoelastic materials, stress and 
strain will be out of phase in dynamic experiments. 
 
Furthermore the modulus must be described by a 
complex modulus. 
 
If an alternation stress/strain is applied to a viscoelastic 
solid, stress and strain are out of phase. 
 
Complex modulus  G = G1 + G2 

storage modulus  =  real part   G1 
loss modulus        =  imaginary part  G2 
 

This is a general description for all viscoelastic 
materials. 
 
Let phase angle be δ, apply sinusoidal strain 
 ε = εoexpiωt  σ = σoexpi(ωt+δ) 

σ
ε

 = G = σ o

εo
exp iδ  

 
In general G2<<G1 
 
G1 represents stress in phase with strain – i.e. energy 
stored during deformation 
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G2 is a measure of energy dissipated/cycle. 
 
Consider energy loss/cycle 

∆E = Re σdε = Re σ
dε
dt0

2π /ω

∫∫ dt  

 

or rate of loss/cycle = 1
2

Re[σ
dε *
dt

] 

 
∴ ∆E = πεo

2G2 

 
Phase angle δ related to G1 and G2 by 
 
   tanδ = G2/G1 
 
 
 
 
 

Measurement of Complex Modulus 
 

Measuring the in phase and out of phase components of 
the response of strain to an imposed stress (or vice 
versa) at different frequencies provides the two 
components of G to be determined. 
 
The modulus may vary greatly with frequency/time 
scale of the experiment. 
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Different techniques are used for different frequencies 
(see Ward). 
 
Example – torsion pendulum 
 
Motion is damped SHO 
 

For thin walled tube, angular strain = r (θ/l) 
Restoring force for rotation θ = Gr(θ/l) x area 
Torque = r Gr (θ/l) 2π rdr 
 

Total torque = 
G2πθr3

l∫ dr  = 
Gπr4θ

2l
 

 
Equation of motion becomes 
 

Iθ
..

+
πr4

2l
+ G1 + iG2( )θ = 0 

 

This is the equation for damped SHM with the θ
.
 term 

being iωθ 

cylindrical rod of polymer 
radius r, length l

rod rigidly clamped at 
one end

inertia disc, 
moment of inertia I

set in oscillatory motion
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With  ω 2 =
πr4

2l
G1

I
  and  tan δ =

G2

G1
=

Λ
π

 

 

Λ is the logarithmic decrement. 
 
As expected  frequency is determined by G1 and 

damping  by G2 
 

This apparatus works over frequency range 0.01-50Hz.  
At higher frequencies wavelength of the stress waves 
becomes comparable with the dimensions of the specimen. 

Results of Measurements 
 

 Rubbery    Visco-     Glassy 
    elastic   

These terms apply to polymer melts, but the phenomena 
are much more general. 
 

G1

G2

tan δ
log G

log ω
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Tanδ and G2 are both large at intermediate frequencies in 
the viscoelastic regime. 
 
This behaviour is the same for solids with any damping 
mechanism. 
 
In the case of metals etc this is sometimes known as 
internal friction. 
 
 
Example – Snoek damping 
In bcc metals, the damping occurs due to movement of 
interstitials e.g. C or N in α iron. 
 
Interstitials sit at the centres of the cube edges, and 
slightly distort the lattice. 
 
When an external stress applied, the energy associated 
with the different interstitial sites is no longer degenerate. 
 
Under oscillatory stress the interstitials will try to move to 
accommodate this. 
 
At high frequencies this is impossible. 
At low frequencies it will occur to completion. 
In both these cases stress and strain will be in phase. 
 
However at intermediate frequencies, around the natural 
frequency of interstitial jumping, there is significant 
damping and G1 and G2 will be out of phase. 
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Jumping will be thermally activated and so the frequency 
at which damping is maximum will be temperature 
dependent. 
 
This is generally true. 

Time-Temperature Superposition 
 

Using polymer analogy again. 
 

 
This represents the behaviour over the whole temperature 
range at a given ω  (or time t). 
 
Alternatively can study at fixed temperature and range of 
frequencies ω . 

log G1

temperature

glassy

transition

rubbery
lightly crosslinked 
rubber (G∝Τ)

linear polymer

log G1

time or 1/ω
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Similar shaped curve is found. 
 
Experimentally observed that there is a correspondence 
between time and temperature. 
 
Can shift curves for viscoelastic properties at different 
temperatures onto a single curve at a single temperature 
to create a master curve. 
 
Then G(T1, t) = G(T2, t/aT) 
where aT is the shift factor and given by 
 

logaT =
−C1(T − T0 )
C2 + (T − T0 )

  WLF equation 

(Williams-Landel-Ferry) 
 
and To is the reference temperature. 
 
C1 and C2 are approximately universal constants 
 C1 = 17.4 and C2 = 51.6K 
 
Note that aT is not a function of time, only temperature. 
 
 
 
 
 
This same equation can be used for any of the viscoelastic 
constants including viscosity. 
 
In which case it recovers the Vogel-Fulcher Law. 
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η(T) = E(T, t)dt
0

∞

∫ = E(Tg, tref
0

∞

∫ )dt

= E(
0

∞

∫ Tg, tref )aTdtref = aTη(Tg)
 

 

⇒ log
η(T)
η(Tg )

 

 
 

 

 
 = logaT  

 

∴η(T ) = Aexp
−B

T − Tg

  as we saw before 

 
Experimentally the WLF equation is very important 
because it enables the response of a system under a wide 
range of conditions to be described from limited 
experimental data. 
 
Theoretically it implies that all the timescales in the 
problem scale in the same way with T. 
 
Implies there is a single basis parameter which for 
polymers turns out to be the segment mobility. 

Dynamics of Polymer Chains 
 

The flow of polymers is dominated by long range 
motions. 
 
However because of the complexity of chains, there are 
many internal motions possible. 
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These show up in the loss modulus (below Tg). 
 
In the glassy state, local segmental notions not sufficient 
to relax the strains imposed by external stress, and G1 is 
high. 
 
Situation more complicated for crystalline polymers, 
where also have to pass through Tm before bulk flow 
occurs. 
 
However remember that polymer chains are entangled 
– so how do they move at all? 
 
These entanglements will affect viscosity, diffusion….. 
 
At first it was thought that this was too difficult to deal 
with at all, but much progress has now been made. 
 
De Gennes conceived of the idea of reptation – moving 
like a snake (1971). 
 
Ideas developed further here by Doi and Edwards. 
 
See the book by M Doi and SF Edwards Theory of 
Polymer Dynamics 1986, OUP. 
 
Think of the motion of snakes in a nest – constrained 
laterally but can move along their length. 
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Where one chain interacts strongly with another chain 
(naively as a simple knot), identify an entanglement. 
 
All the surrounding chains provide constraints for the 
movement of a test chain. 
 

These surrounding chains can be averaged to provide a 
tube of diameter equal to the entanglement separation. 
Consider a chain confined in such a tube. 
 
The chain can slowly escape this tube as it undergoes 
Brownian motion, thereby creating a new tube. 
 
Mobility µ of whole chain = monomeric mobility µ1/N 
 
where N is the number of monomers in the chain. 
 
Einstein relation D=µkT implies 
 

Dtube =
µ1kT

N
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If τ is tube relaxation time, ie time length L of old tube 
takes to be lost and new length L to be created, then by 
random walk 
 

τ ~
L2

D
=

NL2

µ1kT
 

 
Now L is curvilinear length of tube/chain∴ L∝Ν 
 
And τ ∝ N3  (or equivalently M3) 
 
And since η∝τ, reptation model implies η∝N3 
This result is in contrast to small molecules (ie ones for 
which entanglements and the tube concept do not apply) 
for which 
  τ∝ N 
 
Schematically one might expect 
 

Experimentally the dependence in the entangled regime is 
found to be 

molecular weight

ln
 η

η ∝ N

η 
∝

 N
3

entanglement  
molecular weight Me
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  η ∝ Ν3.4 
 
Origin of discrepancy with simple theory is thought to lie 
in fluctuations. 
 
 
 
 
 
If we apply a deformation to a polymer melt, the 
constraints are deformed. 
 
The chain can gradually escape from its tube, to form a 
new undeformed tube. 
 
The relaxation time can therefore be found from 
experiment – often known as the terminal time. 
 
τ∝ N3 in simple reptation theory 
   

MW1<MW2  
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chain has completely escaped no further resistance to 
deformation, and hence G drops. 
 
 
 
 
Alternatively can find the terminal time from the creep 
compliance curves. 
 

As with rubbers, for which we identified a plateau 
modulus inversely related to Mx (the MW between 
crosslinks), for entangled polymers we can find an 
equivalent quantity – Me, the MW between entanglements 
– from the value of the plateau modulus. 
 
By analogy with the theory of rubber elasticity, the value 
of G at the plateau: 
 

G =
ρNAkT

Me
 

lo
g 

J(
t)

log t

τ


