Viscoelasticity
Books

Most polymer texts cover thisreasonably well in
outline.

More specialist texts for reference:

JJ Aklonisand WJ M acknight Introduction to Polymer
Viscoelasticity, Wiley 1983

IM Ward Mechanical Propertiesof Solid Polymers
Wiley

I ntroduction
A viscoelastic material is, asthe name suggests, one

which shows a combination of viscous and elastic
effects.

The viscousterm leads to energy dissipation.
The eastic term to energy storage.

Rateeffectsarevery important for these materials

For aviscous liquid with viscosity h, the constitutive
eqguation relating stresss to strain e is
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de
=h—
> T

Thereis dissipation of energy— and irreversible shape
changes— associated with the flow.

The viscosity can berelated to the diffusion equation.
|f an external forcef on a particle/atom givesriseto a
velocity u then

u= pf where [t isthe mobility

Einstein relation gives
u=D/KT where D isthe diffusion coefficient

Stokes Law saysfor a particle of radiusa
f=6ph au

KT
6paD

P h

In general then h and D areinversely related, and as D
Increases with temperature viscosity decreases.
In contrast most solids exhibit pure elasticity

|deal elastic material
s = Ee E is Young's modulus

Energy is stored as elastic energy.

Material returnsto original shape once stressremoved.

AM Donald 2
Viscoelasticity



Polymeric liquids, and various solids, have attributes of
both and these are known as viscoelastic materials.

Creep

A constant load is applied and theresulting strain is
measured.

30¢ ‘ time load applied
l Y
| el
v/ €, A= y strain measur ed
el ' A e
A A S

= immediate elastic defor mation
e, = delayed elastic defor mation
e; = Newtonian flow (i.e. permanent defor mation)

Define creep compliance

J(t) :?

0]

so there are 3 components of the creep compliance J; in
general associated with the 3 components of strain.

One exception to this is a crosslinked rubber: its
memory effect means that there is no permanent shape
change sothat e;=0and so J; also is zero.
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Divison into J; and J, (or equivalently e; and e,) fairly
arbitrary.

J; and J, sometimes knows as unrelaxed and relaxed
I eSPONSES.
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Stress Relaxation

A fixed extension (strain) isapplied

strain applied
€
— time

\\ stresss measured

Define stress r elaxation modulus

G(t) = Se—(t)

(0]

I f no viscous flow occurs, stress dropsto finite value at
infinitetimes® relaxed modulus

If thereisviscousflow, stress can drop to zero.

Models for Viscoelastic Response

1. Maxwdl Model
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Spring and Dashpot model
Spring = elastic component
+ Dashpot = viscous component

In series

Define characteristic timet for response
t =h/E

Equation of motion

de  _ 1ds s
dt - Edt h
total spring  dashpot
strain rate

Stress relaxation experiment

de/dt = 0 in equation of motion

1ds 1
V0==98 425 ¢
TR
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E dt
b —=-—dt=—
S h t

Ins (t) =Ins - t/t

s(t) _S,

o S8

exp- t/t

E(t) = Ecexp-tit

At very short times, the Maxwell model behavesasa
simple spring.

Takeslonger for the viscous component to respond.

For t>>t stressdropsto zero asonly the response of the
dashpot remains.

2. Kelvin or Voigt M odel

Spring and dashpot in parallel
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Total stress s =Ee +h%

In a creep experiment, s isaconstant s, so, dividing by h

S,_€_de
h

t dt
Can solvefor e with integrating factor expt/t

e(t) = s/E (1-exp-t/t)
Thismodel cannot be used for stressrelaxation
experiments, since it would require infinite forceto strain
viscous elements instantaneoudly.

Both these modelsaretoo simple.

Next step isto combine them to producea'standard
linear solid'.

Thisisan improvement, but thereis still only one
characteristic time associated with the model.

In general therewill be a whole spectrum of these —for
Instance in a polydisperse polymer melt, different chain
lengths respond differently.

Fast chainsrespond faster than long chains.
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So to model a polymer melt properly we might imagine
we need awhole system of standard linear solids each

with itsown t.

2. Standard Linear Solid (dueto Zener)

S
_, de h, ds,
S S, =Nn -
S1 2 d E, dt
hm
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de h,ds,

= E,e+h
> T =TIy, E, dt
Add %d_s to each side
. dt
< +h—md—S:Ere+hmde+hmdsl
E, dt dt E, dt
le

At
U

ds de
S +t ot = E e+t E(Em'i'Er)

| nstantaneous response (e=0), finite de/dt) — no response
from dashpot

\ modulus=E, + E;

L ong time response, dashpot takes all the strain and E,,
does not contribute

g5 \ modulus= E,
= 3

83 relaxed

T E modulus

~time Energy dissipated

| (in dashpot) a

' max dissipation .maXImUm at S.Ome
' intermediate time.

nald 10
hsticity

ISsipation

%rgr ay
z
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At early and late times, no movement in dashpot and
hence no dissipation.

Boltzmmann Super position Principle

To describethe general response of a system, must
allow for details of loading history.

This can be done using the Boltzmann super position
theory.

Boltzmann proposed:
- Creep isafunction of the whole sample loading history.

- Each loading step makes independent contribution to
total loading history.

. Total final deformation isthe sum of each contribution.

| nput

Stress

Strain
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In general, for a creep experiment, increments of stress
ds at timest,

€)= ¢ Ja mdsw)

For stressrelaxation, incremental additions of strain de at
timest,

say-oea mddm

For a steady state shear rate, thiscan berewritten as

s (t) = hde/dt Newton's law of viscosity

¥
whereh, = oG(t - u)du (by change of variable)
0

Notethat thistheory only worksfor small deformations —
thisis linear viscoelastic theory.

Complex Modulus and Dynamic Experiments
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Two types of processes occurring — storage and
dissipation of energy.

L ooking at the analogous situation of L CR circuits,
whereV and | areout of phase for oscillating signals,
can anticipate that for viscoelastic materials, stress and
strain will be out of phase in dynamic experiments.

Further mor e the modulus must be described by a
complex modulus

If an alter nation stress/strain isapplied to a viscoelastic
solid, stressand strain are out of phase.

Complex modulus G =G; + G,
storagemodulus = real part G;
loss modulus = imaginary part G,

Thisisa general description for all viscoelastic
materials.

L et phase angle be d, apply sinusoidal strain

€ = 6,eXPIWT S = S expi(wt+d)
S S :

— =G === d

o 0 expi

In general Y45,Y<<V45,Y%>

G, represents stress in phase with strain —i.e. energy
stored during defor mation
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G, isameasure of energy dissipated/cycle.

Consider energy loss/cycle

piw  de
DE = Regsde=Re ¢ s —dt
o dt
*
or rate of loss/cycle = %Re[s dgt ]

\ DE = peOZGZ
Phaseangled related to G; and G, by

tand = G,/G;

M easur ement of Complex M odulus

Measuring the in phase and out of phase components of
the response of strain to an imposed stress (or vice
versa) at different frequencies providesthe two
components of G to be deter mined.

The modulus may vary greatly with frequency/time

scale of the experiment.
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Different techniques are used for different frequencies
(see Ward).

Example—torsion pendulum

Motion is damped SHO

rod rigidly clamped at
one end

cylindrical rod of polymer
radiusr, length |

Inertia disc,

" moment of inertial

set in oscillatory motion

For thin walled tube, angular strain =r (g/l)
Restoring forcefor rotation g = Gr(g/l) x area
Torque=r Gr (g/l) 2p rdr
G2pqr? 4

Gpr
Total torque = bildr = pZI

g

Equation of motion becomes

4

Iéi+%+(Gl+iGZ)q =0

Thisisthe equation for damped SHM with theq term
being iwq

AM Donald 15

Viscoelasticity



4
With WZZ%% and| tand = 2 =

L isthelogarithmic decrement.

Asexpected frequency isdetermined by G, and
damping by G,

This apparatusworksover frequency range 0.01-50Hz.

At higher frequencies wavelength of the stress waves

becomes compar able with the dimensions of the specimen.
Results of Measurements

Gy
l0g G tan ¢
R
log w
Rubbery Visco- Glassy
elagtic

These terms apply to polymer melts, but the phenomena
are much more general.
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Tand and G, are both large at intermediate frequenciesin
the viscoelastic regime.

This behaviour isthe same for solids with any damping
mechanism.

I n the case of metals etc thisis sometimes known as
internal friction.

Example — Snoek damping
In bce metals, the damping occur s due to movement of
interstitialse.g. Cor Nin a iron.

Inter stitials sit at the centres of the cube edges, and
dightly distort the lattice.

When an external stress applied, the ener gy associated
with the different inter stitial sitesis no longer degener ate.

Under oscillatory stresstheinterstitials will try to moveto
accommodatethis.

At high frequencies thisisimpossible.
At low frequenciesit will occur to completion.
In both these cases stress and strain will bein phase.

However at intermediate frequencies, around the natur al
frequency of interstitial jumping, thereissignificant
damping and G; and G, will be out of phase.
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Jumping will be thermally activated and so the frequency
at which damping is maximum will be temperature
dependent.

Thisisgenerally true,
Time-Temperature Super position

Using polymer analogy again.

glassy

log G1 transition

linear polymer

temperature

Thisrepresentsthe behaviour over the wholetemperature
range at a given w (or timet).

Alternatively can study at fixed temperature and range of
frequenciesw.

log G1
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Similar shaped curveisfound.

Experimentally observed that thereisa correspondence
between time and temperature.,

Can shift curvesfor viscoelastic properties at different
temperatures onto a single curve at a singletemperature
to create a master curve.

Then G(Tq,t) = G(T,, t/ay)
wher e a; isthe shift factor and given by

_ Cl(T' To)
G +(T-Tp)

loga; = WLF equation

(Williams Landel-Ferry)

and T, isthe reference temperature.

C, and C, are approximately universal constants
C,=174and C,=516K

Notethat ar isnot a function of time, only temperature.

This same equation can be used for any of the viscoelastic
constants including viscosity.

In which case it recoversthe Vogel-Fulcher Law.
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¥ ¥
h(T) = OE(T,t)dt = OE(Ty, tres )it
0 0

¥
= OOE(Tg’tref Jardt « = arh(Ty)

p Iogg h(T )0 = loga;
&n(T)g
B
\ h(T)= Aexp—T as we saw before

Experimentally the WLF equation isvery important
because it enablesthe response of a system under a wide
range of conditionsto be described from limited
experimental data.

Theoretically it impliesthat all the timescalesin the
problem scalein the same way with T.

Impliesthereisasingle basis parameter which for
polymer s turnsout to be the segment mobility.
Dynamics of Polymer Chains

The flow of polymersisdominated by long range
motions.

However because of the complexity of chains, thereare
many internal motions possible.
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These show up in the loss modulus (below T,).

In the glassy state, local segmental notions not sufficient
torelax the strainsimposed by external stress, and G, is
high.

Situation more complicated for crystalline polymers,

wher e also haveto passthrough T, before bulk flow
occurs.

However remember that polymer chainsareentangled
—so how do they move at all?

These entanglements will affect viscosity, diffusion.....

At first it wasthought that thiswastoo difficult to deal
with at all, but much progress has now been made.

De Gennes conceived of the idea of reptation —moving
like a snake (1971).

| deas developed further here by Doi and Edwards.

See the book by M Doi and SF Edwards Theory of
Polymer Dynamics 1986, OUP.

Think of the motion of snakesin a nest —constrained
laterally but can move along their length.
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Wher e one chain interacts strongly with another chain
(naively as a ssimple knot), identify an entanglement.

All the surrounding chains provide constraintsfor the
movement of a test chain.

These surrounding chains can be averaged to provide a
tube of diameter equal to the entanglement separ ation.
Consider a chain confined in such a tube.

The chain can slowly escape thistube asit under goes
Brownian motion, ther eby creating a new tube.

Mobility p of whole chain = monomeric mobility /N
where N isthe number of monomersin the chain.

Einstein relation D=pkT implies

., KT
Dtube = 1T
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If t istube relaxation time, ietime length L of old tube
takesto be lost and new length L to be created, then by

random walk
LN
D mkT

Now L iscurvilinear length of tube/chain\ LuN
Andt p N® (or equivalently M?®)

And since hp t, reptation model implies hpu N®
Thisresult isin contrast to small molecules (ie ones for
which entanglements and the tube concept do not apply)
for which

tu N

Schematically one might expect

In h

entanglement
molecular weight M ¢

molecular weight
Experimentally the dependence in the entangled regimeis
found to be
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Log(G(t)

h u N3.4

Origin of discrepancy with smpletheory isthought to lie
in fluctuations,

If we apply a deformation to a polymer melt, the
constraints are defor med.

The chain can gradually escape from itstube, to form a
new undefor med tube.

The relaxation time can therefore be found from
experiment — often known astheterminal time.

tp N° in simple reptation theory

Terminal time MW,;<MW,

{ t
5 1 2
3 I
g ' ' Plateau
S < modulus
®
3
D
o

MW1 I\/IV\/2
Log(time) Oncethe
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chain has completely escaped no further resistance to
defor mation, and hence G drops.

Alternatively can find theterminal timefrom the creep
compliance curves.

log J(t)

log t
Aswith rubbers, for which we identified a plateau
modulusinversaly related to M, (the MW between
crossinks), for entangled polymerswe can find an
equivalent quantity —M ., the MW between entanglements
—from the value of the plateau modulus

By analogy with thetheory of rubber elasticity, the value
of G at theplateau:

_ I NLKT
M

G

€
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